Study on thermal decomposition characteristics of AIBN.

نویسندگان

  • Xin-Rui Li
  • Xin-Long Wang
  • Hiroshi Koseki
چکیده

It is found that the results such as observed in the differential scanning calorimeter (DSC), which show the major thermal decomposition (TD) of a self-reactive material, lack the detail to reveal what happens at the initial stage of a reaction. The reaction at this stage is corresponding to the handling condition of storage or transportation, often possibly having the potential to be developed to a runaway reaction. This paper examined and compared the thermal behaviors of AIBN at various working conditions in calorimeters and Dewar vessels. The mechanism that affects the initial reaction and self-heating behavior of the given material was clarified. Near its onset decomposition temperature, physical processes, such as sublimation or melting interfered the initial reaction of AIBN. The mutuality of the physical effect and the chemical reaction made AIBN behave differently under different measuring conditions, and as the result, quasi-autocatalysis or TD possibly occurs in the same sample at the handling temperature range. The heat accumulation storage tests in two Dewar vessels presented completely different self-heating behaviors due to this mechanism and heat transfer capability of the vessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization and Thermal Stability Study of Styrene-based Ionomers I) Programmed Heating Experiments (10 oC/min to 500 oC)

Ionomers are generally described by copolymers having either acrylic or methacylic acid as one component and the other component is mostly either ethylene or styrene. The objective of this research was to study the thermal behaviour and stability of ionomers of styrene with some alkali metal acrylates. These materials have been synthesized by neutralization of the respective copoly...

متن کامل

Kinetic Study and Thermal Decomposition Behavior of Magnesium-Sodium Nitrate Based on Hydroxyl-Terminated Polybutadiene

This paper has been utilizing the simultaneous ThermoGravimetric analysis and Differential Scanning Calorimetry (TG–DSC) to investigate the thermal decomposition of magnesium-sodium nitrate pyrotechnic composition based HTPB resin. The thermal behaviors of different samples with various fuel-oxidizer ratio contents were determined. Decomposition kinetic was investigated by evaluating the in...

متن کامل

Synthesis of CuO Nanoparticles and Study on their Catalytic Properties

In this research, CuO spherical-like nanoparticles were synthesized using the planetary ball mill method. The structure, particle size and morphology of the resulting CuO nanoparticles were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and SAXS (small-angle X-ray scattering) methods. The results of this investigation showed ...

متن کامل

Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO3)3.9H2O) and ammonium sulfate ((NH4)2SO4). The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were char...

متن کامل

بررسی رفتار حرارتی آمونیوم پرکلرات میکرونیزه تولید ‌شده با روش تبلور ضد‌ حلال بهبود ‌یافته

Ammonium perchlorate (AP) is considered as a strong oxidizer in solid propellants. Therefore, its thermal decomposition characteristics directly influence the combustion behavior of solid propellants. The AP particle size, shape, and morphology influence on the thermal behavior. In this study, the solvent anti-solvent crystallization method equipped with an eductor mixer was used as a system fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 159 1  شماره 

صفحات  -

تاریخ انتشار 2008